Communicatietechnologie

IoT of niet IoT?
Is dat wel de juiste vraag?
Op dit moment staat uw warmtebedrijf aan de vooravond van een spannend avontuur op het gebied van smart metering - met veel verschillende communicatietechnologieën om uit te kiezen. Een van die mogelijkheden is het Internet of Things (IoT).
Hoewel IoT veel slimme antwoorden biedt in deze tijd van onderlinge connectiviteit, het roept ook een aantal vragen op die u zichzelf moet stellen voordat u bepaalt of IoT de juiste keuze is voor u. Op deze pagina helpen we u uw weg te vinden in de voor- en nadelen van de verschillende technologieën.

Welke communicatietechnologie is geschikt voor u?
Uitvinden welke draadloze communicatietechnologie het best is voor uw bedrijf kan moeilijk zijn: Kiest u voor de alom bekende M-Bus protocollen of voor IoT-nieuwkomers zoals NB-IoT en LoRaWAN®?
Ons nieuwste whitepaper over communicatietechnologie voor slimme warmte-/koudemeters geeft een handreiking om de perfecte oplossing voor uw systeem te vinden. Lees het. Het is tijd om het te weten!
Bepaal eerst wat uw zakelijke behoeften zijn. Kies daarna de technologie.
Wat zijn uw eisen ten aanzien van batterijlevensduur, uitleesfrequentie en netwerkbereik?
Heeft u alleen data nodig voor facturatie?
Of ook voor analyse om uw werkzaamheden te kunnen optimaliseren?
Wilt u volledige controle over uw netwerk?
Of laat u die verantwoordelijkheid liever over aan experts op dit gebied?
Wat is de realiteit van uw business?
... dat is de vraag!
Ontdek de technologieën hier
De keuze is aan u en u kunt de volgende stap zetten.
Een nadere beschouwing
Over linkIQ®
Gebaseerd op onze grote standaardisatie-ervaring met de Wireless M-Bus standaard en in het algemeen met draadloze communicatiesystemen voor het uitlezen van meters, maakt linkIQ® afstandsuitlezing van slimme warmte- en watermeters mogelijk met draadloze communicatie via draadloze netwerken. linkIQ® is speciaal ontwikkeld voor smart metering om een robuust netwerk te creëren met een groot bereik en weinig componenten dat tegemoet kan komen aan de databehoeften van moderne bedrijven.
Net als de bekende standaard Wireless M-Bus, gebruikt linkIQ® de licentievrije 868 MHz ISM-frequentieband. De linkIQ®-oplossing is echter ontworpen om storing van andere apparatuur te vermijden.
De linkIQ®-oplossing van Kamstrup ondersteunt ook de Europese standaard voor Wireless M-Bus communicatie, EN13757-4, mode C, zodat de linkIQ® infrastructuur meters kan uitlezen die voldoen aan deze standaard, ongeacht het fabrikaat.
Waarom kiezen voor linkIQ®?
1. Groot bereik en hoge dekkingsgraad met weinig netwerkcomponenten
De dataconcentrators in een linkIQ®-netwerk hebben een groot bereik en hoge dekkingsgraad voor een krachtige datacollectie van warmtemeters met weinig netwerkcomponenten, zelfs wanneer meters verspreid zijn over grote geografische gebieden. Dit betekent dat er minder tijd besteed hoeft te worden aan het vinden van geschikte antennelocaties en het onderhandelen over de gebruiksvoorwaarden en verkort dus de tijd die nodig is voor het opzetten van een netwerk en wordt er minder tijd besteed aan het verbeteren van de verbinding met moeilijk te bereiken meters. Het vermindert ook de investering die nodig is om aan te vangen met afstandsuitlezing via een draadloos communicatienetwerk.
Een Deens nutsbedrijf verminderde het aantal antennelocaties met 70% door te kiezen voor linkIQ®.
2. Minder risico op interferentie
linkIQ® is een technologisch toekomstbestendig en robuust communicatienetwerk. Het signaal wordt gecodeerd verzonden, waardoor data in pakketten kunnen worden hersteld die door interferentie zijn getroffen. Dit vermindert het risico van storing door andere apparatuur en levert een hoge data performance gedurende de hele levensduur van het netwerk.
3. Slimme data
Voor geselecteerde meters biedt linkIQ® slimme data, waardoor het mogelijk is om verschillende datapakketten te kiezen en te configureren en zo tegemoet te komen aan de behoeften van het individuele bedrijf zonder in te boeten op de batterijlevensduur.
Met een linkIQ® -netwerk wordt continu data verzameld, hetgeen ervoor zorgt dat de meterstanden veelal op uurbasis beschikbaar zijn. Bovendien is de robuustheid vergroot door historische data in elk datapakket op te nemen om zo de prestaties na verloop van tijd nog verder te verbeteren.
Mogelijke uitdagingen
1. Datacollectie tot op uur niveau
linkIQ® biedt de mogelijkheid uur- en dagwaarden te collecteren. Wanneer meer data wordt verlangd, is het mogelijk om van geselecteerde meters, prioriteitsdata met intervallen van 5 minuten te collecteren via het Wireless M-Bus-protocol en via hetzelfde netwerk. Deze meters dienen daarvoor te worden geconfigureerd en hebben ook het standaard bereik van Wireless M-Bus, wat aanzienlijk minder is dan dat van linkIQ®.
2. Minder fallback-mogelijkheden
De mogelijkheden voor het uitlezen van meters via drive-by zijn beperkt met linkIQ® omdat de overdrachtssnelheid te laag is in de fallback-modus om die voor normale gebruikssituaties te ondersteunen.
3. Volledige benutting alleen voor Kamstrup meters
linkIQ® is ontworpen, ontwikkeld en exclusief eigendom van Kamstrup. Om de meeste waarde te halen uit een linkIQ®-netwerk en te profiteren van het extra grote bereik, de grotere prestaties en hoge data-nauwkeurigheid, heeft u compatibele Kamstrup meters nodig. Een linkIQ®-oplossing is echter compatibel met de Wireless M-Bus-standaard, EN13757-4, mode C, wat betekent dat een linkIQ® netwerk alle meters kan uitlezen die aan deze standaard voldoen. Meters in een linkIQ®-netwerk die communiceren via Wireless M-Bus moeten worden geconfigureerd in productie of via een fysieke herconfiguratie. Bovendien zullen de meters die communiceren via Wireless M-Bus niet profiteren van het grotere bereik van een linkIQ®-netwerk en aanvullende netwerkcomponenten kunnen nodig zijn om de gewenste kwaliteit te behalen.
Zo begint u
What is wireless M-bus?
Wireless M-Bus is a widespread and standardised communications protocol for wireless meter communication and remote reading of heat, cooling, electricity, and water meters. It is designed specifically to match the utility sector’s need for quality of service and data frequency without compromising on battery lifetime.
Wireless M-Bus can be used to establish remote reading of smart water meters via a drive-by set-up or through a fixed network – and it is possible to combine the two methods of collecting data. A network is typically built and maintained by the utility by installing several data collection units across a supply area. Wireless M-Bus communicates on unlicensed bands with different frequencies being prevalent in different parts of the world.
All our heat/cooling meters and smart devices for utilities can be set-up to transmit data via the Wireless M-Bus standard, supporting a wide range for frequencies.
Why choose Wireless M-bus?
1. Long battery lifetime
Being optimised to support large quantities of data without compromising on battery lifetime, Wireless M-Bus is suited for utilities who are looking to go beyond billing and use the data to optimise operations and maximise their data-utilisation through near real time analysis of water loss and pressure in the distribution network. Wireless M-Bus supports daily or hourly values in a smart meter with an expected lifetime of up to 16 years.
2. Network ownership
Wireless M-bus is also the right choice if you want control of your own network and do not want to depend on third party suppliers to ensure the right meter reading performance and quality of service. The initial investment in establishing a network is higher than other technologies but the cost per meter will often be lower with integrated Wireless M-Bus communication than with other technologies.
3. Flexible solution
Wireless M-Bus networks are best suited to urban areas where it is easier to optimise the balance between meters read per data-collection units. If your supply area covers both rural and urban areas, it is possible to establish a Wireless M-bus network in the densely populated areas and combine that with drive-by meter reading in the sparsely populated areas to ensure a high cost-benefit.
What are potential challenges with Wireless M-Bus?
1. Ownership responsibility
With a network based on the Wireless M-bus protocol, you own the infrastructure and must build and maintain the network to match your required meter reading performance and quality of service. Your business case for investing in a Wireless M-Bus network will be affected by several circumstances such as the size and geographical layout of your supply area.
2. Rural coverage
Because of its reach, a Wireless M-Bus-based network will require more infrastructure to cover rural or sparsely populated areas. In such areas, a drive-by solution with Wireless M-Bus or a network based on a different technology can be alternatives unless you require large quantities of frequent data for advanced analytics.
How to get started with Wireless M-bus?
You build a network based on Wireless M-Bus by installing several data collection units across your supply area. A large-scale data collection unit consists of one or two antennas that pick up the signals from the meters via Wireless M-Bus. An antenna is connected via cables to a concentrator unit which sends data back to your Meter Data Management system via a secure mobile connection. It is also possible to use smaller data collection units to collect data from a limited number of meters.
Normally, a data collection unit can read meters within a radius of 500-1000m. It is, however, possible to achieve ranges of more than 3 km when special antennas are placed, for instance, on chimneys, lattice towers, or flagpoles. The antennas should be installed as high as possible to pick up the signals from the meters in the surrounding area.
You can either build the network on your own or work with your solution provider to set-up the network and ensure the required performance.
Wireless M-Bus can also be used in a drive-by set-up where you drive around your distribution network reading the meters on the go with a small converter unit and an app on your Android smartphone or tablet.
What is LoRaWAN®?
The LoRaWAN® specification is a Low Power, Wide Area (LPWA) networking protocol designed to wirelessly connect battery operated ‘things’ to the internet in regional, national or global networks, and targets key Internet of Things (IoT) requirements such as bi-directional communication, end-to-end security, mobility, and localisation services.
LoRaWAN® network architecture is deployed in a star-of-stars topology in which gateways relay messages between end-devices and a central network server. The gateways are connected to the network server via standard IP connections and act as a transparent bridge, simply converting RF packets to IP packets and vice versa. The wireless communication takes advantage of the long range characteristics of the LoRa physical layer, allowing a single-hop link between the end-device and one or many gateways. All modes are capable of bi-directional communication, and there is support for multicast addressing groups to make efficient use of spectrum during tasks such as Firmware Over-The-Air (FOTA) upgrades or other mass distribution messages.
Why choose LoRaWAN®?
LoRaWAN® is a newcomer and strongly promoted by the LoRaWAN Alliance®, and many vendors have LoRa products making to it easy to build cloud-based solutions to remotely read sensors and devices. Software for the application server is also available for those who wants to have a complete solution.
1. Long range and high coverage with few components
The LoRaWAN® is worldwide. It is possible to use existing LoRaWAN® network providers, or alternatively you can build your own network starting with a single LoRaWAN® gateway to cover large areas with thousands of end-node devices.
2. Reduced risk of interference
LoRa is a patented spread spectrum technology using the unlicensed sub-GHZ frequencies. The modulation ensures high performance, resilience to interference, and high building penetration.
What are potential challenges with LoRaWAN®?
Quality of service depends on the network provider. If the radio coverage fails, the customer may face difficulties in getting them solved.
The communication speed varies. The long range is achieved by slowing down communication which in turn reduces battery lifetime.
Multiple fees may be involved. Subscriptions to cloud solutions, networks operator fees, and key and certificate fees for example. This makes it hard to compare.
How to get started with LoRaWAN®?
One way to start to build a LoRaWAN application would be to team up with a LoRaWAN network provider. In this instance, you will subscribe to a cloud service where your data is stored. All your sensors and devices must be set-up to send data to that provider using several LoRa defined keys.
Building your own network is also possible and will, like any radio-based system, require knowledge on how to place the gateways and antennas to get full coverage for all sensors and devices in the network. For the data reading system, you need to have internet connected servers to run your own cloud solution.
What is NB-IoT?
NB-IoT is point-to-point communication technology, developed as a cornerstone in telco 5G strategies, employing the existing infrastructure of telco-owned antenna sites for mobile communication (LTE). Optimised for excellent coverage and very small data amounts, NB-IoT is a good choice for remote reading of smart meters that are located underground and in other hard-to-reach places where other types of communication technology may fall short. NB-IoT can be used for two-way communication, which is necessary for some smart metering use cases such as firmware updates.
Although still a newcomer in smart metering, the technology is now past its infancy and fully rolled out in several countries. Telecommunication providers worldwide are currently expanding coverage and the number of vendors supporting the technology is also increasing by the minute.
Why choose NB-IoT?
1. Excellent coverage
NB-IoT is interesting in a smart metering context because the coverage it provides makes it suitable for remote reading of heat meters in remote and hard-to-reach locations (e.g., basements). Based on the LTE network, NB-IoT use licensed frequency bands to ensure minimal interference from other devices.
2. Supports high-res data needs for analytics purposes
NB-IoT can carry large amounts of data and transmit it as frequently as you need. For Kamstrup heat/cooling meters, this means detailed data down to 60-minute intervals (up to 32 registers), depending on power supply and choice of data package. The data is transmitted automatically every hour or once per day (daily transfer of hourly values).
3. No infrastructure responsibilities or investments for the utility
NB-IoT is the right choice for utilities that do not want to invest in and own communication infrastructure as it offers data collection entirely without infrastructure responsibilities.
Compared to a solution based on a traditional fixed network, NB-IoT requires no initial investment in the communication infrastructure. In many cases this will make the start-up of remote reading cheaper.
If you want to know the cost of communication in the long run, look for suppliers who offer this at a fixed cost as part of the package.
4. Easier smart meter rollouts
NB-IoT meters communicate directly with your smart metering system via your local telco’s NB-IoT network. This makes meter installation a lot simpler as you can simply deploy the meters when and where you like without extensive planning. It’s virtually plug and play.
5. Future-proof P2P technology
A very wide range of companies are working to promote the technology, and NB-IoT is a cornerstone in the mobile operators 5G strategies. As a result, NB-IoT is likely to have a wide range of supported devices, platforms, and systems, which will benefit your utility.
What are potential challenges with NB-IoT?
1. Power consumption
The power consumption of NB-IoT is significantly lower than the previous cellular communication technologies such as 2G/3G or 4G. This makes it more suitable for battery-powered devices. However, compared to traditional fixed network solutions for smart metering, the power consumption of NB-IoT is still higher. This makes it a challenge to build a viable solution for meters with an expected lifetime of 16 years with the same battery. Therefore, the datagram size from a battery-powered device will be smaller than a datagram from a mains-powered device. But it is possible to obtain a battery lifetime of 16 years.
2. 3rd party infrastructure
If you invest in a NB-IoT based solution, you do not own the infrastructure. This means you are wholly dependent on your telecommunication partner to ensure that your requirements for the meter reading performance are met. In case of problems, you will have no options for improving the coverage, making it important to find the right partners when committing to an NB-IoT solution.
3. Different ITU regions
The different telecommunication providers use different frequency bands for their LTE communication in different parts of the world. Supporting NB-IoT worldwide requires a wide portfolio of modems to be fitted in the water meters according to which region they will be installed in.
What is 2G/4G?
2G/4G is a well-known and well-proven point-to-point communication technology, using the existing mobile infrastructure of telco-owned antenna sites for mobile communication. Optimised for excellent coverage and very large data amounts, the 2G/4G is a good choice for remote reading of smart heat/cooling meters that are in rural and other hard-to-reach places where other types of communication technology may fall short.
2G/4G can be used for two-way communication which is necessary for some smart metering use case, such as firmware updates.
Although 2G/4G communication has been around for a long time, it is still valued in the smart metering industry and fully rolled out in most countries.
Why choose 2G/4G?
1. Excellent coverage
2G/4G is interesting in a smart metering context because the coverage it provides makes it suitable for remote reading of heat/cooling meters. It uses licensed frequency bands – owned by the mobile operators – to ensure minimal interference from other devices.
2. Supports high-res data needs
2G/4G can carry very large amounts of data and transmit it as frequently as you need. For Kamstrup heat meters, this means detailed data down to 5-minute intervals (up to 32 registers).
The data is transmitted automatically every 5/15/60 minutes directly to the Meter Data Management system.
3. No infrastructure responsibilities or investments for the utility
2G/4G is the right choice for utilities that do not want to invest in or own communication infrastructure as it offers data collection entirely without infrastructure responsibilities.
Compared to a solution based on a traditional fixed network, 2G/4G requires no initial investment in the communication infrastructure. In many cases this will make a start-up of remote reading cheaper.
If you want to know the cost of communication in the long run, look for suppliers who offer this at a fixed cost as part of the package.
4. Easier smart meter rollouts
Meters with 2G/4G communicate directly with your smart metering system via your local mobile operators’ network. This makes meter installation a lot simpler, as you can simply deploy the meters when and where you like without extensive planning. It’s virtually plug and play.
5. Future-proof P2P technology
Even if the 2G communication has been around for many years and is facing end of life within the near future, the combination with 4G still makes it a futureproofed technology, as 4G is part of the overall 5G strategy.
What are potential challenges with 2G/4G?
1. Power consumption
The power consumption of 2G/4G is significantly higher than the NB-IoT communication technology, meaning it is not suitable for battery-powered devices and designed for mains supplied devices instead.
However, many utilities have main supplied meters, or a combination of main- and battery-supplied meters. 2G/4G is suitable for meters where a lot of data is required frequently.
2. 3rd party infrastructure
If you invest in a 2G/4G based solution you do not own the infrastructure. Therefore, you are dependent on your telecommunication partner to ensure that your requirements for the meter reading performance are met. In case of problems, you will have no options for improving the coverage. This means it is important to find the right partners when committing to a 2G/4G solution.
3. Different ITU regions
The different telecommunication providers use different frequency bands for their LTE communication in different parts of the world. Supporting 2G/4G worldwide requires a wide portfolio of modems to be fitted in the heat/cooling meters according to which region they will be installed in.

70% minder antennelocaties
Operationele optimalisatie en verbeterde klantenservice met afstandsuitlezing

.jpg%3Fmw%3D672%26mh%3D672&w=1920&q=68)